PHYSICAL REVIEW E 77, 026210 (2008)

Energy enhancement and chaos control in microelectromechanical systems
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For a resonator in an electrostatic microelectromechanical system (MEMS), nonlinear coupling between
applied electrostatic force and the mechanical motion of the resonator can lead to chaotic oscillations. Better
performance of the device can be achieved when the oscillations are periodic with large amplitude. We
investigate the nonlinear dynamics of a system of deformable doubly clamped beam, which is the core in many
MEMS resonators, and propose a control strategy to convert chaos into periodic motions with enhanced output
energy. Our study suggests that chaos control can lead to energy enhancement and consequently high perfor-

mance of MEM devices.
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With the advances of nanoscience and nanotechnology,
interest in the nonlinear dynamics of small-scale systems has
appeared [1-3]. Take, for example, nanosized resonators [4]
that are capable of operating in extremely high frequency
ranges. However, at smaller sizes, the output energies of such
resonators are typically weaker and the effect of nonlinearity
becomes severe. The latter is so because some essential com-
ponents in a resonator, such as a cantilever beam, can behave
nonlinearly at even modest amplitude, leading, for instance,
to chaotic dynamics. While there have been many advances
in the fundamentals of nonlinear dynamics and chaos in the
past three decades, little has been done to extend the research
to small-scale devices, which have become increasingly im-
portant in many areas of science and engineering.

In certain applications such as microfluid mixers [5] and
communication [6,7], chaos is desirable. However, for typi-
cal applications of high-frequency resonators, chaos is con-
sidered as undesirable. One wishes to control chaos to gen-
erate periodic dynamics and obtain strong output energy
even at very small sizes. In this paper, we consider a para-
digmatic class of small-size devices, namely, microelectro-
mechanical systems (MEMS) with a resonant beam, and
demonstrate the ubiquity of chaos and devise a feasible strat-
egy to control chaos and more importantly, to enhance the
output energy of the MEMS resonator. Mathematically, such
a resonator is described by a nonlinear partial differential
equation with sophisticated boundary conditions arising from
the electrophysics and mechanics of the device. While our
chaos control and energy enhancement strategy is not sophis-
ticated, the demonstration is that it is effective in MEMS
resonator, a spatiotemporal dynamical system of high phase-
space dimension, is remarkable. We provide a physical
theory to explain the phenomenon of energy enhancement as
a result of chaos control. To our knowledge, prior to this
work there has been little effort to address the problem of
energy enhancement in small-scale devices, an important
topic in nanoscience and engineering. We expect our result to
find broad applications.

The resonating behavior of a deformable, doubly clamped
beam in MEMS has attracted a great deal of recent attention
[1,2,4,5,8-13]. A doubly clamped flat beam over the ground
plate in MEMS has a simple structure but shows rich dy-
namical behaviors when an external voltage is applied [1].
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The applied voltage generates a potential difference between
the two conductors, the beam and the ground plate, leading
to electrostatic charges on their surfaces. Due to the change
in the distance between the conductors, the charge distribu-
tions can change accordingly, inducing an interacting force
between the conductors. In particular, when a dc voltage is
applied to MEMS, the induced force causes the beam to be
deformed toward the ground plate. If the voltage exceeds a
certain dc pull-in voltage, the center of the beam can move
and even touch to the ground plate. If the applied dc voltage
is near but less than the pull-in voltage, the force becomes
nonlinear with respect to the displacement of the beam, lead-
ing to nonlinear dynamics. In this case, when an ac voltage is
applied, the nonlinear interaction can lead to a rich variety of
oscillatory behaviors. Typically, the beam oscillates periodi-
cally for small ac amplitude but chaos can arise through a
cascade of periodic-doubling bifurcations as the ac voltage
amplitude is increased.

To be concrete, we consider a doubly clamped beam, as
shown in Fig. 1. The general equation governing the time-
dependent deformation of the beam in the presence of an
electrical field can be obtained by considering the following
standard, two-dimensional nonlinear analysis of the micro-
structure [11]:

pi=V - (FS) in Q, (1)
u=GonT, (2)
P-N=HonT, (3)

() (®)

FIG. 1. (Color online) Doubly clamped beam over a ground
plate. (a), (b) Nondeformed and deformed structure before and after
a voltage is applied.
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u| =0=Gg in Q, (4) section, respectively, f, is the mechanical load from the
squeezed air film between the beam and the ground plate,
o=V, in Q, (5) and fg is the electrostatic force per unit length of the beam

where u, 1, and U are the displacement, velocity, and accel-
eration vectors, respectively; p, F, and S are the material
density in the initial configuration, the deformation gradient,
and the second Piola-Kirchhoff stress, respectively; N is the
unit outward normal vector in the initial configuration and G
is the prescribed displacement; G, and V are the initial dis-
placement and velocity, respectively; P is the first Piola-
Kirchhoff stress tensor and H is the electrostatic pressure
acting on the surface of the structures; ) and I" denote do-
main and boundary, respectively; H is a function of the air
damping pressure p due to the thin air (or fluid) film
squeezed between the moving plate and the ground plate.
The following Reynold’s squeeze film equation can be used
to compute the pressure, which can be derived from the
Navier-Stokes equation under the assumptions that the iner-
tial terms are negligible compared to viscous terms, there is
no pressure gradient through the film, and the flow in the
direction perpendicular to the plates is negligible [12]:

z(gsﬁ_p) N 1(5,3&_1)) 12,
ox ox dy ady ot
where x and y are the coordinates along and perpendicular to
the plate, respectively, # is the air viscosity, g is the film
thickness, and the density of air is assumed to be constant.
For the beam structure considered, Egs. (1)—(5) can be

simplified to yield [12]

(6)

A @
&x4+p Py =fe—fa.

with the boundary conditions imposed on the displacements
and their slopes at both fixed ends

u(0,1)=u(L,1)=0,

Au(0,1) B du(L,t) _

0. 8
ox ox ®

In Egs. (7) and (8), u(x,t) denotes the downward deflection
of the beam, E is the Young’s modulus, p is the material
density, A=wh (width X thickness) and I=wh®/12 are the
area and moment of inertia of the beam’s rectangular cross

which is given by fr=¢€,V?>w/2g% In this expression, ¢, is
the permittivity of free space and V(r)=Vy.+V,. cos(2mf1) is
the voltage between the beam and the ground plate separated
by the gap g(x,1)=go—u(x,), and f and g, denote frequency
and the initial gap, respectively.

Since Eq. (6) is linear in p, the pressure can be replaced
by the pressure variation p=p-p,, where p, is ambient at-
mospheric pressure. Applying the boundary condition p=0
to the beam edges and using the assumption that the pressure

is a separable function of x and y, i.e., ﬁ(x,y,t)=ﬁ(x,t)(1
—4y?/w?) [14], we obtain

2 A g 2 g A3 A

g oP 2 PP - J

2§2<g0> 6: - +_A3<go> —8g P=129 8
L) atat 3°\L

w2 at

a2 > O
where g=g(x,1) is assumed to be independent of y and some
nondimensionalized quantities are used: £=x/L (L: beam
length), §=g/go, and w=w/g,. Since generally g,<<L for a
doubly clamped beam in MEMS, Eq. (9) can be further sim-
plified by ignoring terms of the order of (go/L)>. The pres-

sure is thus obtained as P(x,7)=(3/2)(yw?/g%)(dg/dt). The
force per unit length owing to the pressure of the squeezed
air film, f,, is obtained by integrating p(x,y,f) with respect
to y across the width of the beam. We obtain

w/2 2 3
- 4y ) mw? dg
= | Pan(1-5)ay=-T5% " (o0
Sa jw/z (x )( ) Yy g3 o (10)

With the above modeling analysis, the numerical simula-
tion of the device whose dynamics are described by Eq. (7)
can be carried out. The parameters of our simulations are
given as follows: beam length L=300 wm, width w
=10 pwm, thickness A=1 um, the initial gap go=1 um,
Young’s modulus E=169 GPa, density p=2330 kg/m?, Pois-
son’s ratio v=0.3, and the viscosity 7=1.82X 107> kg/ms
for air. With these settings, the governing equation of the
doubly clamped beam, Eq. (7), is solved here by a standard
finite element method [15]. A total of six elements are
employed for numerical analysis. When the applied dc volt-
age is smaller than the dc pull-in voltage V;.=69.0 V, the
beam oscillates initially but after a transient it reaches a
steady deformed state due to fluid damping [Fig. 2(a)]. At
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FIG. 3. Under an ac voltage, phase-space tra-

jectory characterizing the dynamics of the beam
center. (a),(b) Period-1 behavior for V,.=0.3 V
and V,.=3.0 V, respectively, (c) a period-3 state
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V4=69.0 V, a dynamical pull-in of the beam occurs, as
shown in Fig. 2(b). To study the effect of ac voltage on the
beam dynamics, we fix V;.=66.2 V and vary the amplitude
of the applied ac voltage from zero to V,.=6.735 V, above
which the phenomenon of pull-in due to ac voltage occurs.
To visualize the dynamics, we focus on the center point of
the beam and define a dynamical trajectory to be the path
traversed by the center point in the phase space (position and
velocity). For small ac voltage, the trajectory is a period-1
orbit, as shown in Figs. 3(a) and 3(b) for /=714 KHz. As the
ac voltage is increased, period-doubling bifurcations occurs,
leading eventually to chaotic oscillations [16], as shown in
Figs. 3(c) and 3(d).

We now demonstrate that controlling chaos [17] and en-
hancing energy output can be accomplished at the same time,
namely, when chaos is converted into some periodic motion,
the output energy of MEMS resonator can be increased. This
is remarkable considering that in the literature, a commonly
practiced method to increase the energy of the MEMS reso-
nator is to use an array of identical cantilever beams
[9,10,18], but the size of such an array system is usually
much larger than that of a single cantilever beam. In order
to control chaos in a single doubly clamped beam [19],
we propose a controlling perturbation of the form f.
=C,,0x,x ){u(x,t)—u(x,r)}, where u(x,r)=p[cos(2wft/n)
+1], C,, and n are parameters, x. denotes the beam center,
and &(x,x.) is a delta function satisfying the condition:
S(x,x.)=1 if x=x. and &(x,x.)=0 if x# x.. The frequency,
2mft/n, we use for chaos control is exactly the same as that
of the applied voltage V(¢) in the system for n=1. As our
numerical implementation demonstrates, time-delayed feed-
back control appears not necessary to convert chaos in the
MEM beam dynamics into periodic motions.

The system under the control can be written as

Elﬁ A&— (11)
6x4+p P =fe=fatfec

To be concrete, we investigate Eq. (11) for n=2 and B
=0.25, 0.2, and 0.08. Under the control perturbation, the

Displacement (um)

beam shows a transition from chaotic to periodic oscillations
with the increase of C,, for all values of 8 that we have
considered. The amplitude of periodic oscillations has differ-
ent values depending on B and C,,. A numerical bifurcation
analysis indicates that, as C,, is increased through a small
critical value, the dynamics of the beam is robustly periodic.
Figure 4(a) shows a chaotic time series for the displacement
of the beam center for C,,=0 and f=500 KHz. The corre-
sponding phase-space trajectory is shown in Fig. 4(c). A con-
trolled periodic time series is shown in Fig. 4(b) for C,
=11.1X 1075, Figures 4(d)—4(f) show, for three values of C,,
in increasing order, controlled periodic trajectories. We find
that the amplitude of the beam oscillation increases with the
magnitude of the control, while the beam dynamics remains
to be periodic. This means that, controlling chaos, besides
converting the undesirable chaotic behavior into periodic
motion, can bring in an extra advantage: the output energy of
the MEMS resonator can be enhanced.

In traditional chaos control, the control perturbation van-
ishes when periodic motion is achieved. In our scheme, the
control force responds to the displacement of the MEM
beam. As a result, when the beam is controlled so that peri-
odic motion is achieved, control becomes periodic, too. This
is needed for energy enhancement through the mechanism of
resonance. Figures 5(a)-5(d) show time series for the dis-
placement of the beam center and the control term f(z) for
n=2. When the control term is absent, i.e., f(¢)=0, the dis-
placement shows a chaotic behavior, but when the term is
turned on, both the displacement and control perturbation
become periodic.

We now give a heuristic explanation to the phenomenon
of energy enhancement together with chaos control. A recent
work has shown that some dynamical features of our realistic
MEMS resonator with a microcantilever beam can be cap-
tured by the dynamics of a simple damped oscillator [1]
described by mx+bx+kx=Fg, where m, b, and k are the
mass, the damping coefficient, and the harmonic spring con-
stant, respectively. The nonlinear driving force Fg
=ewLV?/{2(g,—x)?} is the static electrical force, where g, is
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the gap in the undeformed state between the microstructure
and the ground electrode, wL is the area of the microstruc-
ture surface facing the ground electrode and V=V
+V,. exp(i27ft) is the applied voltage. The equation for the
damped oscillator can be rearranged by using y=g,—x. We
obtain

- y?my — y?by + y*k(go— y) = ewLV?/2
= AO + A] exp(lZWft)
+ A, exp(idft),

where Ag=ewLV3, A;=ewLV,.V,., and A,=ewLV> /2. The
displacement variable y(r) can be represented by a Fourier
series: y=27,_Yp exp(iP2mft). The findings in Ref. [1] re-

Displacement (pm)

veal that the value of Y,, peaks at f=f,/M, where f,
=\k/m/(2m) is the resonant frequency, leading to maximum
of the ratio Y,,/Y; at that frequency. In particular, the first
amplitude Y, in the series is usually much larger at the reso-
nance frequency than the rest of the amplitudes, as Y, de-
creases rapidly with M.

In the presence of control, the simple oscillator
model  becomes  mi+bxi+kx=Fg+F;,  where F,
=C,[Blexp(i27ft/n)+1}—x] is the control force. A detailed
analysis yields analytic expressions for Yp. For instance, Y

and Y, for n=1 are given by YS—gOY§+fTO/I;:O and Y,
=A,/(Gy+Gy), where Ay=Ag+BC, Y2 k=k+C,, A=A,
+BC, Y5, Go=mYiw'—3kY:i+2kg Yo—ibYiw, and G,
=—2BC,,Yo—3BC,Y2+2g,BC,Y,. Since k>C,, g,>A,/k,
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FIG. 5. Time series of the displacement
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1 u(x,,t) for Vg=662V and V,=6.535V (a)
when the control term f(¢) is turned off and (c)

when it is turned on. Time series of f(z) (b)
] when it is turned off and (d) when it is turned on.
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FIG. 6. (Color online) The plot of Y, vs the normalized fre-
quency for C,,=0, 0.2X 1076, 0.3 107°, and 0.5 X 10~° from bot-
tom to top. The locations of the maxima on the frequency axis in
Y, (f/fy) shift toward the right with C,,. We see that Y, increases
with C,,, as predicted by our theory.

and Y,> Y(z) in the system considered, we obtain approxi-
mately Y,=g, and Y, =(A,+C,,Y3)/(Gy—2BC,,Y,}, which
increases with C,,. The resonance frequency of the system
becomes f;=/(k+C,,)/m/(21r), which is greater than that in
the original system with C,,=0. The locations of the maxima
on the frequency axis in the coefficients Y,,(f) then shift
toward the right. Since the amplitude of Y; is much larger
than Y,, (M=2), it dominates the oscillating amplitude.
Controlling chaos enhances Y, which means the energy out-
put of the controlled system is increased. Figure 6 shows an
example of the increase of Y; with C,, in the plot of Y,
versus f/fy, where the parameter values are m=pwhL

PHYSICAL REVIEW E 77, 026210 (2008)

=1.78 X 107> kg, b=2.832X 107% Ns/m, k=105.625 N/m,
V4c=66.2 V, and V,.=6.535 V.

In conclusion, we have investigated the nonlinear dynam-
ics of a doubly clamped beam on micrometer scales, under
applied voltages. Such beam systems are the central compo-
nent of many state-of-art MEMS resonators. We have found
that chaos can occur commonly in such systems and we pro-
pose an effective strategy to control chaos and, at the same
time, to enhance the oscillating amplitude of the beam while
keeping the dynamics periodic. A feasible way to verify our
results experimentally is as follows: Fabricate a small verti-
cal thin finger (beam) at the center of a doubly clamped
beam and then apply a driving force by electrostatic comb
drive to the finger beam, where the applied electrostatic force
is determined by the voltage difference between the comb
drive electrode and the clamped beam. With a detecting de-
vice such as optical microprobe [21], one can get informa-
tion about the center displacement of the clamped beam as a
function of time, which makes it possible for a specially
designed circuit to supply the electrostatic comb drive with a
proper voltage to realize the feedback force f.

We remark that there have been recent studies of the ef-
fects of nonlinearity on parametric resonance in a microma-
chined oscillator, where nonlinearity can change the stability
characteristics of parametric resonance significantly [20]. It
has been shown that some of the nonlinear effects can be
used as a method to increase the device output energy. These
studies and ours represent encouraging examples where the
principles of nonlinear dynamics can be used for enhancing
the performance of small-sized devices [20]. Such devices
are the core of intense current research in nanoscience and
nanotechnology, where we expect the role of nonlinear dy-
namics to become increasingly essential.

This work was supported by AFOSR under Grant No.
FA9550-06-1-0024.
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